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Abstract 

 

 Vegetation water content is an important parameter for retrieval of soil moisture from 

microwave data and for other remote sensing applications.  Because liquid water absorbs in the 

shortwave infrared, the normalized difference infrared index (NDII), calculated from Landsat 5 

Thematic Mapper band 4 (0.76-0.90 :m wavelength) and band 5 (1.55-1.65 :m wavelength), can 

be used to determine canopy equivalent water thickness (EWT), which is defined as the water 

volume per leaf area times the leaf area index (LAI).  Alternatively, average canopy EWT can be 

determined using a landcover classification, because different vegetation types have different 

average LAI at the peak of the growing season.  The primary contribution of this study for the 

Soil Moisture Experiment 2004 was to sample vegetation for the Arizona and Sonora study 

areas. Vegetation was sampled to achieve a range of canopy EWT; LAI was measured using a 

plant canopy analyzer and digital hemispherical (fisheye) photographs.  NDII was linearly 

related to measured canopy EWT with an R
2
 of 0.601.  Landcover of the Arizona, USA, and 

Sonora, Mexico, study areas were classified with an overall accuracy of 70% using a rule-based 

decision tree using three dates of Landsat 5 Thematic Mapper imagery and digital elevation data.  

There was a large range of NDII per landcover class at the peak of the growing season, 

indicating that canopy EWT should be estimated directly using NDII or other shortwave-infrared 

vegetation indices.  However, landcover classifications will still be necessary to obtain total 

vegetation water content from canopy EWT and other data, because considerable liquid water is 

contained in the non-foliar components of vegetation. 

Key Words: decision tree classification, equivalent water thickness, leaf area index; normalized 

difference infrared index; Soil Moisture Experiment 2004 
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1. Introduction 

 

 As part of the North American Monsoon Experiment, the Soil Moisture Experiment 2004 

(SMEX04) was conducted in Arizona, USA, and Sonora, Mexico, to test soil moisture retrievals 

as a function of topography (Jackson, 2004; Cosh et al., this issue; Vivoni et al., this issue).  One 

of the parameters for retrieval of soil moisture from active and passive microwave remote 

sensing is the vegetation water content (Jackson et al., 2004), which is the total mass of liquid 

water in stems and foliage per ground area (kg m
-2

).  If vegetation water content can be estimated 

independently from other satellite data, then the retrievals of soil moisture would be more 

accurate.  Furthermore, vegetation water content may be useful in detecting wildfire potential 

(Chuvieco et al., 2002; Zarco-Tejada et al., 2003; Maki et al., 2004; Dennison et al., 2005).  

 Liquid water strongly absorbs incident solar radiation in the short-wave infrared 

wavelength region (Palmer & Williams, 1974; Tucker, 1980), thus reflectance spectra of leaves 

and canopies may be used to estimate the volume of liquid water per leaf area or ground area, 

respectively, which is termed the equivalent water thickness (EWT, mm).  Many satellite sensors 

have bands in the shortwave infrared wavelength region such as Landsat 5 Thematic Mapper and 

the MODerate resolution Imaging Spectrometer (MODIS).  Thus, determination of canopy EWT 

is a step towards the remote sensing of total vegetation water content.   

 There have been many studies relating EWT and shortwave infrared reflectances at the 

leaf level (Hunt and Rock, 1989; Danson et al., 1992; Baret & Fourty, 1997; Datt, 1999; Sims & 

Gamon, 2003; Stimson et al., 2005; and others), but fewer at the canopy level with airborne or 

satellite sensors (Hunt, 1991; Zarco-Tejada et al., 2003; Cecatto et al., 2002; Jackson et al., 2004; 
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Chen et al., 2005; Davidson et al., 2006).  Much of the effort has been to develop and test 

multispectral indices for estimation of EWT or vegetation water content (Tucker, 1980; Hardisky 

et al., 1983; Hunt & Rock, 1989; Gao, 1996; Peñuelas et al., 1997; Cecatto et al., 2002; Fensholt 

& Sandholt, 2003). 

 Leaf area index (LAI) is a major variable affecting canopy EWT (Hunt, 1991; Roberts et 

al., 1998, 2004; Anderson et al., 2004) so vegetation types with higher LAI (e.g. forests) will 

have higher canopy EWT than areas with lower LAI (e.g. shrublands).  Maximum LAI is 

determined by vegetation type (Woodward, 1987), and generally vegetation types with a higher 

maximum LAI will also have higher average LAI.  For many purposes such as ecosystem 

modeling, parameter averages can be selected for each vegetation type and a landcover 

classification is used to distribute the parameter averages regionally or globally (Running et al., 

1995; Muchoney & Strahler, 2002).  To determine total vegetation water content including water 

in stems, landcover information will be necessary.  It is therefore reasonable to ask if average 

values for canopy EWT can be assigned by vegetation type, so estimating canopy EWT from 

multispectral indices would not be necessary when the vegetation is at peak LAI for the growing 

season. 

 We hypothesize that remote sensing of canopy EWT from multispectral indices provides 

more information than vegetation type from a landcover classification.  Landsat 5 Thematic 

Mapper (TM) imagery were acquired for several dates during SMEX04 and the TM sensor has  

an important shortwave infrared band (TM band 5, 1.55-1.75 :m wavelength).  We sampled LAI 

and leaf EWT for plots of different vegetation types during SMEX04, and used these data to 

compare canopy EWT from multispectral indices and vegetation type.   
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2. Field Methods 

 

2.1. SMEX04 study areas 

 

 There were two study areas selected for SMEX04, one in Arizona, USA, and one in 

Sonora, Mexico (Jackson, 2004).  The Arizona study area (50 km by 75 km; between 31° 25’ N 

and 32° 7’ N, and 109° 43’ W and 110° 14’ W) was centered about the Walnut Gulch 

Experimental Watershed surrounding Tombstone, Arizona.  The study area includes the San 

Pedro River and ranges in elevation from 1093 m to 2285 m, with an average elevation of 1389 

m.  Mean annual temperature at Tombstone, Arizona (1380 m elevation) is 17.7° C and the mean 

annual precipitation is 350 mm, which about 67% falls during the summer monsoon.   

 The Sonora study area (50 km by 90 km; between 29° 41’ N and 30° 30’ N, and 110° 14’ 

W and 110° 46’ W) is centered on the mountain highlands between the Sonora River and the San 

Miguel River.  The elevations range from 525 m to 2230 m, with an average elevation of 1033 

m.  Mean annual temperature at Opodepe, Sonora (690 m elevation) is 20.8° C and the mean 

annual precipitation is 477 mm, which about 67% falls during the summer monsoon.   

 

2.2. SMEX04 site selection and measurement  

 

 The main objectives of SMEX04 were to  intensively sample soil moisture over the 

Walnut Gulch Experimental Watershed and regionally sample soil moisture over the Arizona and 

Sonora study areas (Jackson, 2004).  Because there were fewer people sampling the vegetation, 
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we could not achieve the same temporal or spatial coverage as occurred for sampling soil 

moisture.  Hence, the objectives for SMEX04 were to sample the range of plant communities 

present, and to use sensors, such as Landsat 5 TM and MODIS to extrapolate vegetation water 

content spatially and temporally.  The sampling protocols evolved over SMEX04; the key 

measurements for each site included ground cover, LAI, and leaf EWT. 

 Plot locations and vegetation types were established for the Arizona study area in June 

and July, 2004 before the start of the SMEX04 experiment. Because the goal was to sample a 

range of vegetation types, most of the plots were not co-located with soil moisture sites (Cosh et 

al., this issue). The first four vegetation plots selected were the four eddy flux sites (Table 1).  

Many vegetation plots were located in the riparian corridors of the San Pedro River and its 

tributaries, at higher elevations, or in irrigated agricultural fields, where LAI was expected to be 

higher than the desert shrubland or grassland communities.  Initially, at least two locations were 

selected for each vegetation type; however, riparian woodland and riparian mesquite 

communities were only measured once.  

 Plot locations in Sonora were co-located with the SMEX04 soil moisture sites, along 

roads in the mountains, in the northern and southern portions of the Sonora study area (Table 1). 

Six of the plots were co-located along an elevational transect (Vivoni et al., this issue). 

  At each location, square plots were established with 40-m sides.  The corners of the plots 

were geolocated with either a Garmin (Olathe, Kansas, U.S.A) eTrex Legend global positioning 

system enabled with the wide-area augmentation system (4-8 m accuracy) or a Trimble 

(Sunnyvale, California, U.S.A) Pro XRS global positioning system (3-5 m accuracy).  Starting 5 
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m from one edge, a series of 7 transects 5 m apart were positioned.  LAI and cover were 

measured along these transects.  

 Cover was measured using the line-intercept technique (Mueller-Dombois & Ellenberg, 

1974).  The cover category was determined at the point of the foot at every 1 to 1.5 m (2 steps) 

along each transect; categories were: live vegetation (green) either by species (when identified) 

or vegetation type, litter (stem or leaf), and bare (soil or rock).  Percent cover was determined 

from the total in each category divided by the total number of points sampled in the plot.  

 

{Table 1 about here} 

 

2.3. Leaf area index 

 

 LAI (m
2
 leaf area per m

2
 ground area) was estimated during the SMEX04 field campaign 

using two different methods: the LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant 

Canopy Analyzer, and digital hemispherical (fisheye) photographs.  The LAI-2000 was used for 

low-statured vegetation (shrublands and grasslands) in the Arizona study area, whereas 

hemispherical photographs were obtained for almost all plots.  The hemispherical photographs 

and LAI-2000 measurements were generally obtained every 5 m along each of the seven plot 

transects, starting 5 m from the plot edge.  When possible, the LAI measurements with both 

techniques were obtained under diffuse skylight conditions (Wells & Norman, 1991).  However, 

for some plots (occurring mostly in the Sonora study area), LAI could only be measured under 
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direct sunlight; for these plots, LAI was increased 10% (John Norman, personal communication; 

Anderson et al., 2004). 

 For the LAI-2000, at each transect location, a single LAI value was obtained from an 

above-canopy reading, followed by 4 sub-canopy readings, where each of the four readings were 

shifted about 0.5 m in a diamond-shaped pattern.  The lens of the LAI-2000 was partially 

covered to allow a 270° field of view in front of the user.  

 The hemispherical photographs were acquired using a Nikon Coolpix 5400 digital 

camera with an 8-mm focal-length lens.  A tripod, compass and bubble level were used to mount 

the camera horizontally about 25 mm off the ground, with the top of the camera always facing 

north.  The resulting digital photographs were analyzed with HemiView Canopy Analysis 

Software, Version 2.1 SR1 (Delta-T Devices, Ltd., Cambridge, U. K.).  

 After analyzing the LAI-2000 and hemispherical photographs for the same plots in the 

Arizona study area, it was found that LAI from the hemispherical photographs were significantly 

less than LAI from the LAI-2000.  A possible reason for this discrepancy is that we used the 

automatic exposure time for the digital camera (Zhang et al., 2005). Therefore, we obtained more 

concurrent measurements of LAI with both the LAI-2000 and hemispherical photographs at 71 

sites (pastures, meadows and woodlands) at the Beltsville Agricultural Research Center, 

Beltsville, Maryland, USA. For woodland sites, two LAI-2000 were used, one for the clear sky 

reading and one for underneath the canopy.  A strong correlation was found (r
2
 = 0 .94) between 

the two methods (Fig. 1).  The regression equation was used to adjust the LAI calculated from 

the hemispherical photographs to the expected value from the LAI-2000 for all plots during 
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SMEX04.  The mean of all measurements (with both techniques when LAI-2000 data were 

acquired) were used for the plot average LAI. 

 

{Figure 1 about here} 

 

2.4. Leaf and canopy EWT 

 

 At most plots, several leaf samples of the dominant vegetation were clipped, sealed in 

small plastic bags, and placed into a cool, dark container to avoid water loss as much as possible.  

Upon return to an air-conditioned room, a sub-sample of the leaves were removed, weighed, and 

photographed with a 4-megapixel digital camera.  In each photograph, reference squares of 12.7 

mm by 12.7 mm, 25.4 mm by 25.4 mm, and 63.5 mm by 63.5 mm, were placed in the 

photographs for scale.  The digital photographs were classified for green vegetation using 

minimum distance supervised classification.  Leaf area was then calculated by counting the 

number of green pixels and multiplying by the scale determined from the reference squares.  

Leaf samples were weighed at 60° C in a drying oven to obtain dry weight.  Leaf EWT (EWTleaf) 

was calculated: 

 

EWTleaf = (FWT - DWT) / Aleaf  [1] 
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where FWT is the sample fresh weight (kg), DWT is the sample dry weight (kg), and Aleaf is the 

sample leaf area (m
2
).  Dividing EWTleaf by the density of water (1000 kg m

-3
), the units of 

EWTleaf are converted from kg m
-2

 to meters.  Canopy EWT (EWTcanopy) was defined: 

 

EWTcanopy = EWTleaf  
.
 LAI  [2] 

 

which is the depth of foliar liquid water per unit area of ground (Hunt, 1991).  

 

 

3. Landsat 5 Thematic Mapper 

 

3.1 Acquisition and georeferencing 

 

 As part of SMEX04, Landsat 5 TM scenes (level 1G) were acquired on three dates (11 

June 2004, 29 July 2004, and 30 August 2004), one for the Arizona study area (Path 35/Row 38) 

and one for the Sonora study area (Path 35/Row 39).  The two scenes were mosaicked into one 

image for each date (Fig. 2).  There was little cloud cover: < 1 % on 11 June, < 5 % on 29 July, 

and < 1% on 30 August.  The images were then registered using the Environment for Visualizing 

Images (ENVI) version 4.1 (Research Systems, Inc., Boulder CO, USA).  USGS Digital 

Orthophoto Quads were used to obtain 10 ground control points for the Arizona study area.  The 

residual mean square error was < 20 m for each image (Fig. 2).  
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{Figure 2 about here} 

 

3.2 Atmospheric correction 

 

 In order to get top-of-the-canopy reflectances, the digital numbers for Landsat bands 1-5 

and 7 were converted first into radiances: 

 

L = [(Lmax - Lmin) 
.
 Qcal/ Qcal max] + Lmin   [4] 

 

where, L is the spectral radiance at the sensor's aperture (W m
-2 

sr
-1

 :m
-1

), Qcal is the quantized 

calibrated pixel value in digital number (DN), Qcal min is the minimum quantized calibrated pixel 

value (DN=0), Qcal max is the maximum quantized calibrated pixel value (DN=255), Lmin is the 

spectral radiance (W m
-2 

sr
-1

 :m
-1

) scaled to Qcal min, and Lmax is the spectral radiance (W m
-2 

sr
-1

 

:m
-1

) scaled to Qcal max (Chander & Markham, 2003).  The values of Lmin, Lmax and Qcal max are 

taken from Landsat-5 TM post-calibration of the dynamic ranges for US Processes National 

Landsat Archive Production System (Chander & Markham, 2003). 

 The atmospheric correction for all channels was conducted using the MODerate 

resolution atmospheric TRANsmission (MODTRAN) model (Adler-Golden et. al., 1999).  As 

input data for MODTRAN, sun photometer data were obtained through the NASA Goddard 

Space Flight Center AERONET network (http://aeronet.gsfc.nasa.gov), ozone content data were 

obtained from Environment Canada (http://woudc.ec.gc.ca/cgi-bin/selectMap/), radiosonde data 
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were obtained from National Oceanic and Atmospheric Administration 

(http://raob.fsl.noaa.gov/), and meteorological data were obtained from nearby weather stations. 

 If the area surrounding a target is assumed to be similar to the target and the target is a  

Lambertian surface, the reflectance at the target is expressed:  

 

∆ =  Β (L - Lp)   /  [T (Edir + Ediff) + Β S (L - Lp)] [5] 

 

where: Lp is the atmospheric path radiance (W m
-2 

sr
-1

 :m
-1

), Edir is the direct irradiance at the 

surface (W m
-2

), Ediff is the diffuse irradiance at the surface (W m
-2

), S is the reflectance of the 

atmosphere, and T is the total diffuse transmittance from the ground to the top of the atmosphere 

in the view direction of the satellite (Vermote, et al., 1997; Vermote & Vermeulen, 1999; Adler-

Golden et al., 1999).  MODTRAN was used to estimate the parameters in Eq. 5, so that ∆ for 

Landsat bands 1-5 and 7 were calculated. 

 

3.3. Vegetation indices 

 

 Canopy EWT is usually remotely sensed using various vegetation indices.  The most 

common index using in remote sensing is the normalized difference vegetation index (NDVI; 

Rouse et al., 1974):  

 

NDVI = (∆0.85 – ∆0.66) / (∆0.85 + ∆0.66)  [6] 
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where ∆0.85 is the reflectance of a near-infrared band and ∆0.66 is the reflectance of a red band at 

about 0.85 :m and 0.66 :m wavelength, respectively. This index is correlated to LAI (Tucker, 

1979; Peterson et al., 1987; Baret & Guyot, 1991; Franklin et al., 1997).  This index also 

differentiates between green vegetation and soil background, and is also useful for landcover 

classification.  Because a major variable affecting the canopy EWT is LAI (Hunt, 1991; Roberts 

et al., 1998, 2004), NDVI should be correlated to canopy EWT.  Hardisky et al. (1983) proposed 

the normalized difference infrared index (NDII) as correlated to plant moisture content: 

 

NDII = (∆0.85 – ∆1.65) / (∆0.85 + ∆1.65)  [7] 

 

where ∆1.65 is the reflectance of a shortwave-infrared band at about 1.65 :m wavelength.  In 

another study, Hunt and Rock (1989) showed that the moisture stress index (MSI): 

 

MSI = ∆1.65 / ∆0.85  [8] 

 

is a function of leaf EWT for a wide range of leaf morphologies.  However, MSI is inversely 

related to leaf EWT and thus may cause more confusion than normalized difference indices.  

NDII is equal to (1 - MSI)/(1 + MSI), so there is a direct, non-linear relationship between these 

two indices.  NDII linearly increases with canopy EWT at low canopy EWT (Ceccato et al., 

2002; Jackson et al., 2004; Davidson et al., 2006), so NDII is preferable to MSI as a vegetation 

index.  MODIS has another band at about 1.24 :m wavelength which also may be used to 

estimate canopy EWT (Gao, 1996): 
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NDWI = (∆0.85 – ∆1.24) / (∆0.85 + ∆1.24)  [9] 

 

where NDWI is the normalized difference water index and ∆1.24 is the reflectance at about 1.24 

:m wavelength.  Gao (1996) has important, specific reasons for using ∆1.24 instead of ∆1.65, so 

NDWI is not synonymous with NDII.  Because Landsat 5 TM does not have a band in the 1.24 

:m wavelength region, NDWI was not used in this study.  

 

3.4. Vegetation classification 

 

 Digital elevation data (90 m) were acquired for the Sonora study areas from the North 

American Monsoon Experiment data center at the Earth Observing Laboratory, National Center 

for Atmospheric Research (Boulder, CO, USA, 

http://http://data.eol.ucar.edu/codiac/ds_proj?NAME).  Digital elevation data (30 m) were 

obtained for the Arizona study area from GeoCommunity at Qlinks Media Group (Niceville, FL, 

USA, http://data.geocomm.com).  Using elevation, slope and maximum curvature were 

calculated within the Environment for Visualizing Images (ENVI version 4.0, Research Systems, 

Inc., Boulder, Colorado, USA) to delineate riparian areas from upland areas.  Rather than use 

band reflectances for classification, NDVI and NDII were used because these indices reduced the 

effects of the substantial variation in soil background reflectances.  Furthermore, the overall 

mean of NDVI and NDII and the maximum difference of NDVI and NDII over the three dates 

were calculated in ENVI.  A 15-band dataset was created from the three topographic variables, 
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the three dates of NDVI, the three dates of NDII, three-date mean NDVI and NDII, three-date 

maximum NDVI and NDII, and the maximum difference of NDVI and NDII for classification of 

vegetation types.    

 A decision tree (Belward & de Hoyos, 1987; Lloyd, 1990; Bolstad & Lillesand, 1992; 

Running et al., 1995; Friedl & Brodley, 1997) was used to classify the study areas and the 

surrounding region using ENVI.  Most decision-tree classifications use statistical procedures on 

training data to develop rules for each node (Friedl & Brodley, 1997).  Here the rules were 

developed manually to have the fewest number of nodes by comparing the classification to the 

ground data and general vegetation maps for the Arizona and Sonora study areas (Jackson, 

2004).  Ground data used to develop the classification were the vegetation plots in the Arizona 

and Sonora study areas (Table 1).  The following were initially determined to be the major 

landcover classes and were selected for the initial classification: (1) water, (2) unvegetated, (3) 

desert shrublands, (4) grassland, (5) riparian mesquite, (6) riparian woodland, (7) evergreen oak 

woodland, (8) evergreen needle-leaf woodland, (9) subtropical shrubland, and (10) agriculture.   

 Desert shrublands are most common vegetation type at the lower, non-riparian lands in 

Arizona and Sonora, with creosote bush, deciduous leguminous shrubs and desert succulents 

commonly occurring (Table 2).  There are three different types of grassland depending on 

elevation: riparian sacaton, lower elevation black grama, and higher elevation sideoats grama 

(Table 2).  The grasslands and desert shrublands have a very gradual transition and are common 

of the Sonoran and Chihuahuan deserts (MacMahon, 2000).  Riparian communities are mesquite 

and deciduous woodlands (Table 2); mesquite occurs throughout the study areas, both upland 

and riparian, but in the riparian zone it forms small trees whereas in the uplands it is similar in 
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stature and density to other desert leguminous shrubs.  At higher elevations are evergreen oak 

and pine woodlands, with a significant understory of sideoats grama.  Subtropical shrubland is a 

drought-deciduous vegetation community in Sonora, which leafs out during the summer 

monsoon, and occurs at elevations between the desert shrublands and oak woodlands.  One of the 

differences between the desert shrubland and subtropical shrubland was the substitution of the 

saguaro cactus with the organ-pipe cactus (Table 2).  Agriculture is a mixed landcover class, 

which included different irrigated crops at different stages of development. 

 

{Table 2 about here} 

 

 The soil moisture plots sampled during SMEX04 (Cosh et al., this issue; Vivoni et al., 

this issue) were used to assess the accuracy of the classification.  Accuracy was assessed using 

producer, user and overall accuracies (Congalton and Green, 1999).  Because the soil moisture 

plots were not selected to have a range of vegetation types, there were an insufficient number of 

points for most vegetation classes; thus, the vegetation plots were included the accuracy 

assessment.  
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4. Results and Discussion 

 

4.1. NDII and canopy EWT 

 

 LAI was generally low except for irrigated agricultural areas and riparian woodlands 

(Table 3), which was expected due to the desert climate.  Also, LAI (Table 3) was correlated 

with the cover of green vegetation (Table 1) with r = 0.59, which was significant at P < 0.005.  

For non-succulent vegetation types, leaf EWT ranged from 0.11 mm to 0.27 mm, in the range 

found for many leaves (Hunt & Rock, 1989; Sims & Gamon 2003).   The variation in LAI and 

leaf EWT created a large range in canopy EWT from 0.01 to 0.75 kg m
-2

 (Table 3).   

 The dates for the July and August Landsat TM images occurred before and after, 

respectively, the dates for the SMEX04 fieldwork.  Therefore, the average NDII from the July 

and August imagery were compared to the vegetation data (Table 3).  NDII was linearly related 

to canopy EWT (Fig. 3).  This regression equation was used to estimate canopy EWT for the 

three dates of Landsat TM imagery (Fig. 4).  MSI and NDVI did not have as high R
2
 or as low 

standard error as NDII for estimating canopy EWT (data not shown). 

 Two recent studies have related canopy EWT to vegetation indices using ∆1.65: Ceccato et 

al. (2002), and Davidson et al. (2006).  Pietro Ceccato (personal communication) and Andrew 

Davidson (personal communication) provided more information on their findings, so that we 

were able to compare our results with theirs. The regression equations between NDII and canopy 

EWT from these two studies were not significantly different from that in Fig. 3 using a dummy 

variable regression (P = 0.536 and P = 0.076 for Ceccato et al. and Davidson et al., respectively).  
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Thus, Ceccato et al. (2002) and Davidson et al. (2006) together with this study suggest that the 

canopy EWT-NDII relationship is robust.  Hunt (1991) estimated very large canopy EWT during 

the Oregon Transect Terrestrial Ecosystem Research project, and the relationship between 

canopy EWT and NDII was different from Fig. 3, Ceccato et al. (2002), and Davidson et al. 

(2006).  From Hunt (1991), it is likely that the canopy EWT-NDII relationship becomes 

saturated at high canopy EWT.   

 The standard error of the y estimate for the regression equation in Fig. 3 is 0.133 mm, 

which is somewhat less than the average of leaf EWT (Table 3).  Therefore, the relationship 

between Landsat TM NDII and canopy EWT is not useful for detecting the incipient stages of 

drought stress because most of the leaf water would need to be lost before detection of stress, 

which supports Hunt & Rock’s (1989) conclusion using MSI (Eq. 8).  However, ∀0.133 mm is 

equivalent to an accuracy of 0.5 to 1 m
2
 m

-2
 LAI for non-succulent species, so the accuracy of 

NDII may be sufficient for assimilation into algorithms to retrieve soil moisture from microwave 

remote sensing data. 

 

{Table 3 and Figures 3 and 4 about here} 

 

4.2. Landcover classification 

 

 SMEX04 vegetation data (Table 1) were used in a preliminary analysis to separate 

different landcover classes based on elevation and average NDVI (Fig. 5).  Grasslands and 

shrublands had lower average NDVI whereas other vegetation types had higher average NDVI. 
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NDVI and elevation data from the imagery using known areas of pine woodlands indicated that 

this landcover class could not be separated from evergreen oak woodlands, so these two classes 

were combined.  Elevation was particularly useful for separating the subtropical shrublands from 

the higher elevation evergreen oak and pine woodlands (Fig. 5).  Agriculture had the highest 

NDVI (Fig. 5), but the NDVI was highly variable, which was likely due to the three Landsat 5 

TM images being acquired at different stages of crop growth. 

 The first major decision in the regression tree was differentiation between areas of low 

and high vegetation cover, based on average NDVI (Table 4, Rule 1).  Areas with very low 

average NDVI are either water bodies or playas with no vegetation.  Grasslands and shrublands 

also have low NDVI, and were distinguished based on the green-up of grasslands with the 

summer monsoon rains (Table 4, Rule 4). Riparian vegetation was first separated using stream 

channels defined by topography and was not seasonal (Table 4, Rule 5).  The amount of NDII 

and NDVI separate riparian mesquite from riparian woodlands classes (Table 4, Rule 9).  

Subtropical shrublands are drought-deciduous and occur only in Mexico, so first a border of 

latitude was created in northern Sonora, so that areas south of this latitude with a large 

phenological change in NDVI would be classified as subtropical shrubs (Table 4, Rule 6).  

Except for the topography, subtropical shrubs show similar NDVI change with crops and NDVI 

amount with evergreen vegetation. So the use of NDVI change and amount was critical to mask 

out evergreen and crops respectively to handle the similarities between each class, which resulted 

in a variety of rules (Table 4, Rule 7). However, combining the various crop types into one class 

resulted in nested statements to separate woods from agricultural fields (Table 4, Rule 7). Being 

grown at different wide range of altitude, evergreen conifer and oak woodlands have occur at  
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three different elevation environments along a south to north precipitation gradient (Table 4, 

Rule 8). 

 After the rules for the various landcover classes that were defined during the SMEX04 

experiment were applied, there was a large area that remained unclassified.  These areas had 

higher NDVI than shrublands, and lower NDVI than evergreen woodlands, and did not have the 

strong phenology signal as subtropical shrublands.  Therefore, a new class was created, sparse 

woodlands, which were observed in the field to be dominated by upland mesquite, Acacia 

shrubs, and ironwood.  In the Arizona study area, when these species occurred at low density and 

at low elevations, these species were classified as desert shrubland (Table 1, AZ Kendell – 

whitethorn).  In the Sonora study area, these species occurred at higher density (Table 1, SO 135, 

SO 136 and SO 143), leading to higher NDVI.     

 The final landcover based on the three dates of Landsat 5 TM data are shown in Fig. 6. 

The various classes show the general trends of the vegetation with elevation as observed in the 

Arizona study area.  The dominant landcover class in the Arizona study area was desert shrub, 

and the dominant landcover class in the Sonora study area was subtropical shrub.  However, 37% 

of the Sonora study area was classified as sparse woodland, whereas this landcover class was 

only 5% of the Arizona study area (Fig. 6).    

 The overall accuracy of the decision-tree classification was only 70 % (Table 5).  The 

overall accuracy is low, in part because the sparse woodlands were not defined a priori, and thus, 

were treated as classification errors.  By including sparse woodlands as a separate land-cover 

class before data collection, the overall accuracy increases to 75%.  For the two landcover 

classes that had a large number of samples, desert shrublands in the Arizona study area and 
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subtropical shrublands in the Sonora study area, the user and producer accuracies were about 

80% to 90% (Table 5).  Grasslands were poorly differentiated with a producer accuracy of 44 % 

and a user accuracy of 18%.  The poor classification of grasslands was caused by confusion with 

shrublands in the Arizona study area (Table 5).  Evergreen woodlands also were poorly 

classified, with a producer accuracy of 18%.  All landcover classes had some confusion with the 

residual class, sparse woodland (Table 5), particularly the desert shrubland in the Sonora study 

area, indicating the transitional nature of the sparse woodland class. 

 It was expected that there would be stronger differences among the vegetation types 

based on phenology.  However, the summer monsoon started late in 2004, which may have 

reduced the expected phenological differences.  Elevation data had to be added to the 

classification, as a proxy for precipitation, because of reduced rainfall in the summer of 2004.  

 

{Tables 4 and 5 and Figures 5 and 6 about here} 

 

4.3. Comparison of canopy EWT from NDII and landcover 

 

 When canopy EWT and July-August average NDII were averaged by landcover class, 

there was a strong linear relationship between canopy EWT and NDII (Fig. 7).  The July-August 

average was selected because this time period represents peak LAI as the result of the summer 

monsoon and the imagery brackets the time the ground data were collected.  Since there was no 

sparse woodland class sampled during SMEX04, canopy EWT and NDII were estimated with the 

average values of shrubland, grassland, riparian woodland, evergreen woodland, and subtropical 
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shrubland.  Although the R
2
 of Fig. 7 was much higher than Fig. 3, the regression equations were 

not significantly different, because the same data were used for both regressions.  The important 

point of Fig. 7 is that predictions of canopy EWT based on landcover-class averages appear to be 

more accurate than predictions based on NDII, but this is simply due to averaging plot variability 

within the data points used for each landcover class. 

 Canopy EWT predicted from landcover class were different to the canopy EWT from 

NDII, particularly in the desert shrublands and evergreen woodlands of the Arizona study area 

and in the subtropical shrublands in the Sonora study area (Fig. 8).  The differences in canopy 

EWT between the two methods are shown in Fig. 9.  Most of the two TM images have close 

agreement between canopy EWT predicted from landcover class and from NDII.  The errors for 

the evergreen woodlands and subtropical shrublands are large compared to the standard error in 

the regression of Fig. 4.   

 These errors may be the lack of representative sampling done during SMEX04 for 

subtropical shrublands, however, there were many plots of evergreen oaks woodlands in both the 

Arizona and Sonora study areas (Table 1).  The value for leaf EWT of subtropical shrublands 

was assumed to be 0.3 mm (Table 2), which is within the range found for drought-deciduous 

shrubs in the Southern California Chaparral (Sims & Gamon, 2003).  Other large errors were 

found for bare soil, playas and active mines, for which the landcover classification assumed a 

value of 0 mm for canopy EWT.  We hypothesize that the high values of canopy EWT for non-

vegetated surfaces may simply result from these surfaces being wet or from mineral absorptions 

(Ben-Dor, 2002). 
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 There is a large range of overlap in NDII among the various landcover classes (Fig. 10).  

Variation in NDVI shows a similar pattern of large variation (data not shown).  Some of the 

variation in NDII can be attributed to errors in the landcover classification (Table 5); however, 

much of the range of variation is probably attributed to differences in LAI, because the field data 

measured during SMEX04 had similar changes in LAI (Table 2).   

 For some landcover classes such as agriculture, seasonal growth results in large increases 

in LAI and canopy EWT (Jackson et al., 2004; Anderson et al., 2004; Doraiswamy et al., 2004), 

so landcover average EWT would not be appropriate.  For other remote sensing applications 

such as estimating fuel dryness for wildfire potential, seasonal variation of canopy EWT is 

necessary. For both the Arizona and Sonora study areas, NDII tracked changes in canopy EWT 

over the summer, monsoonal growing season (Fig. 4), which would not be possible with the 

landcover-based canopy EWT.  After the initial growth phase of perennial vegetation, patterns of 

LAI are related to precipitation and soil water holding capacity (Woodward, 1987; Nemani & 

Running, 1989; Hoff & Rambal, 2003); thus, landcover average EWT is actually site dependent.  

Broad variation in NDII in each landcover class (Fig. 10) suggests that even at the peak of the 

growing season, a biophysical relationship between NDII and canopy EWT would be preferable 

to landcover averages for mapping vegetation water content for soil moisture retrievals from 

microwave data.   

 

{Figures 7-10 about here} 
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5. Conclusions 

 

 Using vegetation data collected during SMEX04, two alternatives developed for canopy 

EWT, one based upon NDII and the other using landcover class.  Similar to leaf studies, changes 

in shortwave-infrared reflectances at about 1.65 :m wavelength compared to near-infrared 

reflectances are probably directly related to canopy EWT, as indicated by extensive simulations 

using canopy radiative transfer models (Baret and Fourty, 1997; Ceccato et al., 2001, 2002).  The 

linear relationship between NDII and canopy EWT found here was not significantly different 

from other studies over the same range of canopy EWT (Cecatto et al., 2002; Davidson et al., 

2006); thus, NDII from various sensors, such as MODIS, may be able to provide a global 

estimate of canopy EWT.  Whereas landcover class was a relatively poor predictor of canopy 

EWT, landcover class will still be very important for estimating total vegetation water content, 

because considerable liquid water is contained in the non-foliar components of vegetation.  

Although we used NDII for this study, we expect similar conclusions for other vegetation indices 

based on the spectral absorption features of liquid water.  
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Table 1. Vegetation plot classification, date sampled, elevation, location, and cover fractions during SMEX04 

______________________________________________________________________________________________ 

Site name (class)   Date      Elevation (m)        Coordinates (°)     Cover (fraction)  

___________________ ________________  

Lat N   Lon W  Green Litter Bare  

______________________________________________________________________________________________ 

AZ Maize (agriculture)  29Jul   1301  31.9772    109.8582    1.00   0.00   0.00  

AZ Chili (agriculture)   29Jul   1304  31.9718    109.8582    0.73   0.00   0.27  

AZ Lewis Springs (sacaton) 
1
  29Jul   1233  31.5606    110.1398    - - - 

AZ Lucky Hills (shrub) 
1
  30Jul   1366  31.7434    110.0523    0.53   0.00   0.47  

AZ Kendell (grass) 
1
   30Jul   1533  31.7371    109.9419    0.57   0.02   0.40  

AZ Lewis Springs (rip. mesquite) 
1
 30Jul   1236  31.5651    110.1361    0.80   0.08   0.11 

AZ RG13 (shrub) 
2
   31Jul   1328  31.7246    110.0909    0.53   0.00   0.47 

AZ Kendell (whitethorn shrub) 31Jul  1504  31.7376    109.9558    0.69   0.11   0.20  

AZ Stronghold (grass)  2Aug   1540  31.8547    110.0085    0.56   0.24   0.20  

AZ Stronghold South (oak)  2Aug   1533  31.7369    109.9418    0.75   0.24   0.00 
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AZ Stronghold North (oak)  2Aug     1514  31.8635    110.0165    0.80   0.17   0.03 

AZ San Pedro (rabbitbrush shrub) 3Aug   1237  31.5372    110.1336    0.52   0.22   0.26  

AZ San Pedro (riparian wood) 3Aug   1235  31.5379    110.1335    0.98   0.00   0.02  

AZ San Pedro (sacaton)  3Aug   1231  31.5565    110.1427    - - - 

AZ RG57 (beargrass shrub) 
2
  7Aug   1463  31.7283    109.9859    0.49   0.05   0.46 

SO 135 (mesquiteshrub) 
2
  6Aug   1064  30.2550    110.5149    0.64   0.17   0.20  

SO 134 (oak) 
2
    6Aug   1216  30.2199    110.4616    0.56   0.09   0.35  

SO TID1 (oak) 
3
   6Aug   1279  29.9728    110.4695    0.66   0.19   0.16  

SO TID2 (oak) 
3
   6Aug   1279  29.9709    110.4707    0.86   0.04   0.10  

SO TID4 (oak) 
3
   7Aug   1258  29.9684    110.4722    0.74   0.17   0.09  

SO TID5 (oak) 
3
   7Aug   1147  29.9716    110.4776    0.81   0.00   0.19  

SO 136 (shrub) 
2
   7Aug     988  30.3127    110.6736    0.72   0.03   0.25  

SO 143 (mesquiteshrub) 
2
  7Aug     971  30.3416    110.5561    0.61   0.09   0.30  

SO TID7 (subtropical) 
3
  8Aug     900  29.9639    110.5183    0.24   0.00   0.76  

SO TID13 (subtropical) 
3
  8Aug     900  29.9623    110.5209    0.70   0.00   0.30  

_______________________________________________________________________________________________ 
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1
 Flux site 

2
 SMEX04 raingauge and soil moisture sampling site 

3
 TID, Elevational Transect ID Number  
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Table 2. Common names and species names representative of some vegetation classes 

______________________________________________________________________ 

Common Name   Species Name   Vegetation Class  

______________________________________________________________________ 

Creosote bush   Larrea tridentata  Shrub 

Cat's claw   Acacia greggii   Shrub 

White thorn   Acacia constricta  Shrub 

Ironwood   Olneya tesota   Shrub 

Beargrass (succulent)  Nolina microcarpa  Shrub 

Saguaro (succulent)  Cereus giganteus  Shrub 

Yucca (succulent)  Yucca schottii   Shrub 

Ephedra (succulent)  Ephedra trifurca  Shrub 

Rabbitbrush   Chrysothamnus nauseosus Shrub 

Sacaton   Sporobolus wrightii   Grass 

Black grama   Bouteloua eriopoda  Grass 

Sideoats grama  Bouteloua curtipendula Grass 
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Mesquite   Prosopis velutina  Riparian Mesquite or Shrub 

Organ-pipe cactus  Stenocereus thurberi  Subtropical 

Willow   Salix spp.   Riparian Wood 

Cottonwood   Populus tremontii  Riparian Wood 

Pine    Pinus spp.   Evergreen 

Oak    Quercus spp.   Evergreen 

______________________________________________________________________ 
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Table 3. Site leaf area index (LAI), leaf equivalent water thickness (EWT), and canopy EWT.  LAI (m
2
 m

-2
) was estimated using the 

LICOR Plant Canopy Analyzer (LAI-2000) or canopy hemispherical (fisheye) photographs corrected to expected value for the LAI-

2000, Fig. 1).  When both the LAI-2000 and fisheye photographs were used, final plot LAI was the mean of the two methods. 

___________________________________________________________________________________________ 

Site name (class)   LAI  LAI   Leaf EWT  Canopy EWT 

     (LAI-2000) (fisheye)  (mm)   (kg m
-2

) 

___________________________________________________________________________________________ 

AZ Maize (agriculture)  5.33  7.82   0.11   0.72 

AZ Chili (agriculture)   1.63  2.03   0.21   0.38 

AZ Kendell  (grass)   0.25  0.09   0.16   0.03 

AZ Stronghold (grass)  0.24  0.21   0.14   0.03 

AZ Lewis Springs (sacaton)  -  1.15   0.19 
1
   0.22 

AZ San Pedro (sacaton)  1.10  1.21   0.19   0.22 

AZ Lucky Hills (shrub)  -  0.27   0.27   0.07 

AZ RG13 (shrub)   0.32  0.36   0.19 
2
   0.07 

AZ Kendell (whitethorn shrub) 0.29  0.27   0.19   0.05 

AZ RG57 (beargrass shrub)  0.20  -   0.63   0.13 
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AZ San Pedro (rabbitbrush shrub) 0.40  -   0.69   0.27 

AZ Lewis Springs (rip. mesquite) 1.25  1.38   0.16    0.21 

AZ San Pedro (riparian wood) -  2.41   0.20 
3
   0.48 

AZ Stronghold South (oak)  -  0.98   0.13   0.13 

AZ Stronghold North (oak)  1.16  0.98   0.14   0.14 

SO 134 (oak)    -  0.69   0.11   0.08 

SO 135 (mesquiteshrub)  -  1.98   0.14   0.28 

SO 136 (shrub)   -  0.60   0.16   0.10 

SO 143 (mesquiteshrub)  -  0.63   0.11   0.07 

SO TID1 (oak)   -  0.59   0.18 
4
   0.11 

SO TID2 (oak)   -  1.74   0.18 
4
   0.31 

SO TID4 (oak)   -  0.75   0.19   0.14 

SO TID5 (oak)   -  1.13   0.16   0.18 

SO TID7 (subtropical)  -  0.77   0.30 
5
   0.23 

SO TID13 (subtropical)  -  1.17   0.30 
5
   0.35 

__________________________________________________________________________________________ 

1
 Value from AZ San Pedro sacaton was used 
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2
 Value from AZ Kendell white thorn was used 

3
 No available data, 0.20 mm from Populus deltoides (E. R. Hunt, personal communication) 

4
 Average value was used for SO TID-4 and SO TID-5 

5
 No available data, 0.30 mm from Sims and Gammon (2004) 
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Table 4. Rules for decision tree land cover classification. 

______________________________________________________________________________________________________ 

Rule Conditional statement 
1
        False   True 

______________________________________________________________________________________________________ 

1 (NDVI-ave > 0.27) &  

 [(NDVI-ave  > 0.32) | ((NDVI_211 - NDVI_163) > 0.195)] 
2
   Rule 2   Rule 5 

    

2 NDVI-ave  > 0.13          Rule 3   Rule 4 

    

3 NDVI-ave  > 0.00          Water         Unvegetated 

    

4 (NDVI-ave  < 0.22 ) & (NDVI-max-diff < 0.08) 
3 

    Grass   Shrub 

    

5 [(slope < 5) & (DEM <1550 | max-curv <30.3)]  

 & [(NDII-max-diff < 0.26) & (NDVI-ave  <0.53)]
 
    

 & [(NDVI_211- NDVI_163)<0.20 & (NDVI-max - NDVI_163) < 0.275]
 4
  Rule 6   Rule 9 
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6 [(border = 1) & (DEM < 1550) & (max-curv < 30.3)]   

& [((NDVI_211- NDVI_163) >0.23)]  

& [(NDVI-ave  > 0.40) & (NDVI_163< 0.31)] 
5
     Rule 7   Subtropical 

    

7 [(DEM < 1550) & (slope < 1.5)]  

 & {(NDVI-ave  > 0.40) & [(NDVI-max-diff > 0.45)  | (NDVI-max > 0.80) |  

 (NDII-max > 0.40) | (NDII-max-diff > 0.50)]} 
6
     Rule 8   Agriculture 

    

8 {[(DEM > 2000) & (NDVI_163 < 0.7)  & (NDII_163 < 0.23)] |  

 [(DEM > 1700) & (DEM < 2000) & (NDII_163 < 0.17) & (NDVI-ave  > 0.40)] |  

 [(DEM > 1300) & (DEM < 1700) & (max-curv > 30) & (NDII_163 > -0.10) &  

 (NDVI-ave >0.40)]} 
7
         Sparse Woodland Evergreen 

    

9 (NDII_163 < 0.04 ) & (NDVI_163< 0.47)      Riparian Wood     Mesquite 

_________________________________________________________________________________________________________ 
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1
   Symbols and variable names 

and (&); or,(|) ; digital elevation model (DEM, m); normalized difference vegetation index (NDVI); normalized difference 

infrared index (NDII); slope calculated from DEM (slope, %); maximum curvature calculated from DEM (max-curv, 

dimensionless); division between semiarid and subtropical vegetation types(border); average NDVI for the three TM images 

(NDVI-ave); maximum NDVI for the three TM images (NDVI-max); maximum difference of NDVI among the three TM 

images (NDVI-max-diff); average NDII for the three TM images (NDII-ave); maximum NDII for the three TM images (NDII-

max); maximum difference of NDII among the three TM images (NDII-max-diff); yearday 163 (June 11) value, yearday 211 

(July 29) value; yearday 243 (August 30) value. 

2
   Rule 1 : Average NDVI separates low and high vegetation cover 

3
   Rule 4 : Seasonal increase in NDVI separates grasses from shrubs 

4
   Rule 5 : Stream channels and little change over time separates riparian vegatation from other vegetation types 

5 
  Rule 6 : Subtropical shrubs are highly seasonal and occur only in the Sonoran study area 

6
  Rule 7 : Agriculture is highly seasonal and occur on relatively flat land

7
  Rule 8 :  Evergreen oaks and conifers occur at different 

elevations on a south to north gradient due to differences in precipitation 
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Table 5. Accuracy assessment for landcover classification.  The ground data include the vegetation sites (Table 1) that were used for 

training and the soil moisture sites from SMEX04.  

_______________________________________________________________________________________________________ 

 Ground data 

______________________________________________________________________________________ 

Class   Grass Shrub    R. Mesquite
1
  R. Wood

2
 Evergreen

3
 Agriculture Subtropical Total User Acc. (%) 

________________________________________________________________________________________________________ 

Grass     4    14  1  -  3    -    -   22  18 

Shrub     4    89  -  -  2    -    -   95   94 

R. Mesquite    -      1  -  -  -    -    -     1    0 

R. Wood    -    -  1  -  -    -    -     1       0 

Evergreen    -    -  -  -      2    -    -     2  100 

Agriculture    -    -  -  -  -        1    -     1  100 

Subtropical    -    1  -  -  2    -  20   23  87 

Sparse Wood
4
    1    8  3  2  2    1    3   20                0 

Total       9 113  5  2  11    2        23 165    

Producer Acc. (%) 44       79  0  0        18  50  87    



 

 

45

Overall Accuracy (%)                      70 

_______________________________________________________________________________________________________ 

1
 Riparian mesquite 

2
 Riparian woodland (cottonwood-willow) 

3
 Combined evergreen oak and pine woodlands 

4
 New intermediate category, sparse woodland 
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Figure Captions 

 

Fig.1. Calibration of Leaf Area Index (LAI, m
2
 m

-2
) from digital hemispherical (fisheye) 

photographs with the LICOR LAI-2000 Plant Canopy Analyzer.  LAI of 71 plots at 5 sites at the 

USDA Beltsville Agricultural Research Center were measured to extend the range for the 

calibration equation.  The equation is y = 1.9175 x - 0.2121, with an R
2
 of 0.935. 

 

Fig. 2.  Landsat 5 Thematic Mapper (TM) images acquired on (A) June 11, (B) July 29, and (C) 

August 30, 2004 during the Soil Moisture Experiment 2004 (SMEX04).  Images are displayed as 

color composites of atmospherically-corrected reflectances with TM band 5 (red), TM Band 4 

(green) and TM Band 3 (blue).  North is towards the top of the figure. The boxes represent the 

75-km-by-50-km Arizona, USA study area (AZ) and the 90-km-by-50-km Sonora, Mexico study 

area (SO). 

 

Fig. 3.  Canopy equivalent water thickness (EWT) versus July-August average Normalized 

Difference Infrared Index (NDII).  The equation of the simple linear regression is y = 0.938 x + 

0.185, with an R
2
 of 0.601 and a standard error of the y estimate of 0.133 mm. 

 

Fig. 4.  Canopy EWT estimated by NDII from Landsat 5 TM images acquired on (A) June 11, 

(B) July 29, and (C) August 30, 2004.  The regression for the plot data (Fig. 3) was used to 

estimate canopy EWT.  Boxes show the SMEX04 study areas in Arizona and Sonora. 
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Fig. 5.  Relationships of NDVI and elevation for landcover classification based on vegetation 

sites used for a decision tree classification. 

 

Fig. 6.  Landcover classification from three dates of Landsat 5 Thematic Mapper imagery with 

the SMEX04 study areas shown in boxes. 

 

Fig. 7.  Landcover-average canopy EWT versus landcover-average NDII.  The equation of the 

simple linear regression is y = 1.23 x + 0.0722, with an R
2
 of 0.980 and a standard error of the y 

estimate of 0.081. 

 

Fig. 8. Canopy EWT estimated by (A) Landcover and (B) July-August average NDII.   Class 

averages were used to estimate EWT for panel A and the regression from the plot data (Fig. 3) 

was used for panel B.  Boxes show the SMEX04 study areas in Arizona and Sonora. 

 

Fig.  9.  The absolute difference in canopy EWT estimated from the July-August average NDII 

and landcover.  Boxes show the SMEX04 study areas in Arizona and Sonora. 

 

Fig. 10.  Percentiles of NDII for each landcover class.  The center line is the median, the ends of 

the boxes are the 25th and 75th percentiles, and the error bars are the 10th and 90th percentiles.  


